Curl Size and Pelt Color Determination of Zandi Lambs Using Image Processing and Artificial Neural Network

Authors

  • A.A. Aslaminejad Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • A.R. Jafari Arvari Department of Animal Science, Qom Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Qom, Iran
  • M. Khojastehkey Department of Animal Science Research, Qom Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Qom, Iran
Abstract:

In this study, a method based on using image processing and artificial neural network is introduced to determine pelt color and curl size of newborn lambs in Zandi sheep. The data was collected from 300 newborn lambs reared in the Zandi sheep breeding centre of Khojir, Tehran. Primarily, curl size and pelt color of new born lambs was recorded by experienced appraisers, and at the same time, several digital images were captured from the lateral side of each lamb. The features related to curl size and pelt color of lambs were extracted from digital images using image processing tools (IPT) of MATLAB software. To determining the pelt color, to classifying the pelts for curl size, and to estimating the curl size of pelt, three artificial neural networks were designed. The pelt color of the lambs was determined using an artificial neural network with a precision of 100%. The accuracy of the neural network which trained to classify the pelts on their curl size was 94.87%. The accuracy of the third neural network to estimate the curl size of pelts was 98.44%. The correlation between the curl size estimated using the artificial neural network and the curl size which measured by appraisers was 96.4% (P<0.01). The results of this study showed that there is a potential to use artificial intelligence as a substitute for human assessments in the recording of pelt traits.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

full text

determination of cherry color parameters during ripening by artificial neural network assisted image processing technique

among the different classes of physical properties of foods, color is considered the most important visual attribute in quality perception. consumers tend to associate color with quality due to its good correlation with physical, chemical and sensorial evaluations of food quality. this study used an inexpensive method to predict sweet cherries color parameters by combining image processing and ...

full text

Diagnosis of brain tumor using image processing and determination of its type with RVM neural networks

Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...

full text

Comparison of Artificial Neural Network Training Algorithms for Predicting the Weight of Kurdi Sheep using Image Processing

Extended Abstract Introduction and Objective: Due to weakness, the occurrence of unwanted errors, the impact of the environment and exposure to natural events, human always make mistakes in their diagnoses of the environment or different topics, so that different people 's perception of a single and unique event may be very different and be diverse. Nowadays, with the development of image proc...

full text

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  105- 113

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023